
LINKED LISTS

ARRAY VS LINKED LIST

node

node node Array

Linked List

WHAT’S WRONG WITH ARRAY AND WHY

LISTS?

 Disadvantages of arrays as storage data structures:

 slow searching in unordered array

 slow insertion in ordered array

 Fixed size

 Linked lists solve some of these problems

 Linked lists are general purpose storage data
structures and are versatile.

LINKED LISTS

 Each data item is embedded in a link.

 Each Link object contains a reference to the next
link in the list of items.

 In an array items have a particular position,
identified by its index.

 In a list the only way to access an item is to
traverse the list

 Is LL an ADT?

OPERATIONS IN A SIMPLE LINKED LIST:

Insertion
Deletion
Searching or Iterating through
the list to display items.

OPERATIONS IN A SIMPLE LINKED LIST:

The simplest methods are
 insertfirst() and

 deletefirst(),

 where the first item in the linked list is accessed
and deleted or a new item is inserted as the
head or root of the list.

To insert or delete items from any other part
of the list, we need to traverse the list
starting from its root and traversing till we
get the item that we are looking for.

EXAMPLES

 ..\ReaderPrograms\ReaderFiles\Chap05\linkList\lin

kList.java

 ..\ReaderPrograms\ReaderFiles\Chap05\linkList2\li

nkList2.java

 Linklist2.java: delete (key), find(key)

../ReaderPrograms/ReaderFiles/Chap05/linkList/linkList.java
../ReaderPrograms/ReaderFiles/Chap05/linkList/linkList.java
../ReaderPrograms/ReaderFiles/Chap05/linkList/linkList.java
../ReaderPrograms/ReaderFiles/Chap05/linkList/linkList.java
../ReaderPrograms/ReaderFiles/Chap05/linkList/linkList.java
../ReaderPrograms/ReaderFiles/Chap05/linkList/linkList.java
../ReaderPrograms/ReaderFiles/Chap05/linkList/linkList.java
../ReaderPrograms/ReaderFiles/Chap05/linkList/linkList.java
../ReaderPrograms/ReaderFiles/Chap05/linkList/linkList.java
../ReaderPrograms/ReaderFiles/Chap05/linkList/linkList.java
../ReaderPrograms/ReaderFiles/Chap05/linkList/linkList.java
../ReaderPrograms/ReaderFiles/Chap05/linkList/linkList.java
../ReaderPrograms/ReaderFiles/Chap05/linkList2/linkList2.java
../ReaderPrograms/ReaderFiles/Chap05/linkList2/linkList2.java
../ReaderPrograms/ReaderFiles/Chap05/linkList2/linkList2.java
../ReaderPrograms/ReaderFiles/Chap05/linkList2/linkList2.java
../ReaderPrograms/ReaderFiles/Chap05/linkList2/linkList2.java
../ReaderPrograms/ReaderFiles/Chap05/linkList2/linkList2.java
../ReaderPrograms/ReaderFiles/Chap05/linkList2/linkList2.java
../ReaderPrograms/ReaderFiles/Chap05/linkList2/linkList2.java
../ReaderPrograms/ReaderFiles/Chap05/linkList2/linkList2.java
../ReaderPrograms/ReaderFiles/Chap05/linkList2/linkList2.java
../ReaderPrograms/ReaderFiles/Chap05/linkList2/linkList2.java
../ReaderPrograms/ReaderFiles/Chap05/linkList2/linkList2.java

DOUBLE-ENDED LISTS

Similar to an ordinary list with the addition
that a link to the last item is maintained
along with that to the first.

The reference to the last link permits to
insert a new link directly at the end of the list
as well as at the beginning.

This could not be done in the ordinary linked
list without traversing the whole list.

This technique is useful in implementing the
Queue where insertions are made at end
and deletions from the front.

DOUBLE-ENDED LISTS

 ..\ReaderPrograms\ReaderFiles\Chap05\doublyLink
ed\doublyLinked.java

null First
last

../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java

LINKED LIST EFFICIENCY

 Insertion and deletion at the beginning of the list are
very fast, O(1).

 Finding, deleting or inserting in the list requires
searching through half the items in the list on an
average, requiring O(n) comparisons.

 Although arrays require same number of
comparisons, the advantage lies in the fact that no
items need to be moved after insertion or deletion.

 As opposed to fixed size of arrays, linked lists use
exactly as much memory as is needed and can
expand.

ABSTRACT DATA TYPES

 Focus on what the data structure does

 Ignore how it does.

 ADT is a class considered without regard to its
implementation.

 Examples: Stacks and Queues

 They can also be implemented using linked lists as
opposed to array in the previous chapter.

ADT LISTS

Also called linear list.

Group of items arranged in a linear order.

Operations supported are : insertion,

deletion and read an item.

List is defined by its interface; the specific

methods used to interact with it.

This can be implemented using arrays or

linked lists.

SORTED LISTS (PRORITYQ)

As the name suggests data is stored in

order.

Find and delete methods are used.

Advantage of sorted list over sorted array is

speed of insertion and its ability to expand

to fill available memory.

Efficiency:

-- Insertion and deletion of arbitrary items

require O(n) comparisons.

DOUBLY LINKED LISTS

 Solves the problem of traversing backwards in an
ordinary linked list.

 A link to the previous item as well as to the next item is
maintained.

 The only disadvantage is that every time an item is
inserted or deleted, two links have to be changed
instead of one.

 A doubly-linked list can also be created as a double –
ended list.

 See doublyLinked.java

 ..\ReaderPrograms\ReaderFiles\Chap05\doublyLinked\d
oublyLinked.java

../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java
../ReaderPrograms/ReaderFiles/Chap05/doublyLinked/doublyLinked.java

ITERATORS (ADT)

 An iterator is a reference that points to a link in an
associated list.

 In order to traverse a list, performing some
operation on certain links it is efficient to go from
one link to another, checking whether each meets
the criteria and then performing the operation.

 To do this, we need a reference that can be
incremented.

 This reference can be embedded in a class object.

 Objects containing references to items in data
structures, used to traverse theses structures are
called Iterators.

METHODS IN ITERATOR

 The iterator methods allow the user to move along
the list and access the link currently pointed to.

 The following methods make the iterator more
flexible:

-- reset()

-- nextLink()

-- getCurrent()

-- atEnd()

-- insertAfter()

-- insertBefore()

-- deleteCurrent()

